
Conditional relaxation of a charge state under continuous weak measurement

Gyong Luck Khym1,2 and Kicheon Kang1,*
1Department of Physics, Chonnam National University, Gwangju 500-757, Korea

2Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
�Received 8 January 2009; revised manuscript received 5 April 2009; published 4 May 2009�

We investigate the conditional evolution of a charge state coupled to a mesoscopic detector under continuous
weak measurement. The state suffers relaxation into a particular state with a definite charge when electrons in
a particular output lead are monitored in the detector. The process of the conditional relaxation is not restricted
by the shot noise of the detector, unlike the case of the back-action dephasing. As a result, the relaxation of
conditional evolution is much faster than the current-sensitive part of dephasing. Furthermore, the direction of
the relaxation depends on the choice of the output lead. We propose that these properties can be verified in a
two-path interferometer containing a quantum dot capacitively coupled to a detector. In this setup, the current-
current correlation between the interferometer and the detector reveals characteristic features of conditional
relaxation.
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I. INTRODUCTION

The quantum measurement problem continues to attract
interest because a measurement process inevitably causes the
“wave-function reduction” that cannot be described in terms
of the Schrödinger equation.1 Mesoscopic physics has re-
cently progressed into a stage that enables us to treat this
issue. In particular, a quantum dot entangled with a mesos-
copic conductor undergoes “back-action dephasing” which
has been experimentally verified.2–4 This dephasing has also
been a subject of intensive theoretical investigation.5–17 The
back-action dephasing can be understood in terms of the pos-
sibility of acquiring charge-state information. However, it is
important to note that the actual measurement has not been
performed for the dephasing process. It only refers to the
possibility of measurement and is a result of averaging over
all possible measurement outcomes. On the other hand, a
quantum measurement performed on the detector brings
about a sudden reduction in the charge state �or the “wave-
function collapse”�.18 Continuous measurement on a particu-
lar outcome of the detector state results in an evolution of the
charge state in a way that depends on the choice of measure-
ment outcome.

The system under study is schematically drawn in Fig. 1.
A quantum point-contact �QPC� adjacent to a charge qubit
�usually a double quantum dot� can be used as a charge de-
tector through the charge sensitivity of the detector
current.2,4,19 The information of the charge state is trans-
ferred to the detector in the form of a quantum entanglement.
There are two possible outcomes of measurement in the QPC
detector, that is, transmission and reflection, for each of the
detector electrons. Transport through a quantum dot coupled
to a QPC detector depends on what detector output current is
observed,20 demonstrating the conditional statistics. The na-
ture of electron transport in the detector is stochastic because
of random partitioning at the QPC. The stochastic evolution
of the charge state under this random selection of the detec-
tor state has been studied before.21,22

In our study, in contrast, we investigate the evolution of
the state of the charge qubit with the condition that only one

particular lead of the detector is intentionally monitored. Our
main observations are: �1� the initial state given as a coherent
superposition of two different charge states is relaxed to the
one of the fixed charge state. The direction of the relaxation
depends on the choice of measurement on the detector. That
is, the charge state is relaxed to �0� �state without an extra
charge on the quantum dot adjacent to the QPC� conditioned
on the selection of the detector electron at T. On the other
hand, the charge state is relaxed to �1� �state with an extra
charge� when electrons are continuously selected at lead R.
�2� The relaxation rate is the same in both cases and is pro-
portional to the charge sensitivity of the detector transmis-
sion. The relaxation rate is much larger than the current-
sensitive part of the dephasing rate, which can be regarded as
a manifestation of nonlocality in a measurement process.

We propose an experimental setup which can be used to
verify this conditional relaxation. In order to monitor the
state of the target system, we introduce a quantum dot em-
bedded in a two path interferometer. The electronic Mach-
Zehnder interferometer with a quantum Hall edge channel23

is an ideal system for this purpose, but the conventional type
of Aharonov-Bohm interferometer24 can also be used. For
charge detection, a QPC is considered which is capacitively
coupled to the quantum dot. We show that, while the current
oscillation amplitude in the interferometer is directly related
to dephasing via entanglement, the cross correlation of the
currents �between a lead of the interferometer and the other
in the detector� reveals the characteristic features of the con-
ditional relaxation. This is possible through conditional sta-
tistical average of the state of the interferometer.

The paper is organized as follows. In Sec. II, we formu-
late the problem of a target state coupled to a mesoscopic
detector, and briefly review on the dephasing of the target
state as a result of entanglement. In Sec. III, we discuss our
main idea of the conditional relaxation under continuous
weak measurement of a particular output of the detector.
Section IV is devoted to the discussion on the possible ex-
perimental verification of the conditional relaxation by con-
structing a two-path interferometer. The conclusion will be
given in Sec. V
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II. FORMULATION AND DEPHASING
OF THE CHARGE STATE

Initially, the charge state of the target system is in general
given as a linear superposition, a0�0�+a1�1�, of two different
charge states, �0� and �1�, respectively. Electron scattering via
QPC detector is affected by the state of the target system and
is accounted for in the scattering matrix �for j=0,1�

Spc = �� j0 + � j1��rj tj�

tj rj�
� , �1�

where its elements depend on the charge state �j�. For a de-
tector bias Vdet, the average number of electrons injected into
the QPC during the time interval t is n=eVdett /h. We are
interested in the limit of continuous measurement, that is,
n�1, and neglect the energy dependence of the matrix ele-
ments.

The electron creation�annihilation� of energy � at lead l
�l=S ,T ,R� is represented by the operator cl

†����cl����. The
initial state is a direct product of the charge state a0�0�
+a1�1� and the detector state 	0���eVdet

cS
†����F� where �F� is

the Fermi sea of electrons with their energies lower than
zero. Upon interaction of n detector electrons with the charge
state, the two subsystems get entangled as

��� = a0�0� � 
	
�

�0
†�����F� + a1�1� � 
	

�

�1
†�����F� , �2a�

where the energy interval 0���eVdet is counted. � j
†���

�j=0,1� creates a charge-state-dependent detector electron,

� j
†��� = rjcR

†��� + tjcT
†��� . �2b�

Dephasing of the charge state induced by this type of
entanglement is now well understood.5–15 First, we briefly
review the dephasing properties of the charge state. The
charge state is described by a reduced density matrix 	
=Trdet��������, where Trdet�¯� sums over the detector’s de-
grees of freedom. From this, we can find the time evolution
of the density-matrix elements,

ln 	 j j��t� = ln 	 j j��0� + 
0���eVdet

ln�
 j j����� , �3�

where 
 j j����=rj�
� rj + tj�

� tj is the quantity that accounts for the
effect of charge detection. The initial density matrix is
	 j j��0�=ajaj�

� . Equation �3� indicates that the diagonal com-
ponents are unchanged, but the off-diagonal terms decay as a
function of time leading to dephasing. In the limit of t

�h /eVdet with �
01�����1 �weak continuous measurement�,
we obtain the asymptotic relation �	01�t��= �	01�0��exp
�−�dept� where the dephasing rate �dep is given by �dep
=−�h−1d� ln�
01����. Due to the condition of weak measure-
ment ��
01�����1�, �dep can be expanded in terms of the
change in the transmission probability

�T = T0 − T1

�T j ��tj�2� and the change in the relative scattering phase
��arg�t0 /r0�−arg�t1 /r1�. We find

�dep =
eVdet

8h

��T�2

T�1 − T�
+

eVdet

2h
T�1 − T����2, �4�

where T= �T0+T1� /2.

III. CONDITIONAL RELAXATION
OF THE CHARGE STATE

Next, we discuss our main observation of the conditional
evolution of the charge state. In the above, we have de-
scribed dephasing of the charge state by its entanglement
with the detector electrons. Actual measurement for the de-
tector is not performed for dephasing of the charge state. In
contrast, we can monitor the charge state of the target system
under continuous selection of detector electrons at a particu-
lar lead. �This corresponds to a continuous projective mea-
surement.� The conditional state is obtained by projecting the
total state into a state with a specific outcome of measure-
ment and renormalizing the reduced wave function.18 It is
important to note that, under this circumstance, the charge
state is not entangled with the detector state, and remains as
a pure state. In the particular setup of Fig. 1, there are two
possible outcomes for measurement on the detector, that is,
transmission and reflection, for each of the detector elec-
trons. So, there are two different ways of continuous projec-
tion for the detector outputs. This measurement is given by
the operator

My = Ny�y��y� , �5a�

where �y�= �	�cy
†�����F� and Ny = ��� �y��y ����−1/2. The case

y=R �y=T� corresponds to a continuous projection of the
detector state onto lead R�T�. The corresponding state of the
composite system evolves as

��� → My��� = ��y�t�� � �y� , �5b�

where

MR��� = NR
a0�	
�

r0��0� + a1�	
�

r1��1�� � �R� ,

MT��� = NT
a0�	
�

t0��0� + a1�	
�

t1��1�� � �T� .

Clearly, the two subsystems are disentangled upon the mea-
surement as a result of the “wave-function collapse.” From
the Eq. �5b�, the conditional state of the target system is
given by

FIG. 1. �Color online� A schematic of a target state coupled to a
quantum point-contact detector. The state information is encoded in
the charge-dependent reflection and transmission amplitudes, rj and
tj, respectively, in the detector �j=0,1�.
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��y�t�� = Ay�t��0� + By�t��1� , �5c�

where the coefficients Ay�t� and By�t� satisfy the relations,

BR�t�
AR�t�

=
a1

a0
	

�

r1

r0
,

BT�t�
AT�t�

=
a1

a0
	

�

t1

t0
. �5d�

In the asymptotic limit �t�h / �eVdetR0� for y=R, t
�h / �eVdetT0� for y=T�, we find

BR�t�
AR�t�

= e��rel
R /2+i�R�ta1

a0
,

BT�t�
AT�t�

= e�−�rel
T /2+i�T�ta1

a0
, �5e�

where the relaxation rates are

�rel
R = 2R0� h−1d� ln�r1/r0� , �5f�

�rel
T = − 2T0� h−1d� ln�t1/t0� . �5g�

Here R j = �rj�2 is the reflection probability. The measurement
also induces the phase shifts �R=R0eVdet arg�r1 /r0� /h and
�T=T0eVdet arg�t1 / t0� /h, respectively. Imposing conditions
for weak measurement, ��T /R0�1 for y=R and �T /T0
�1 for y=T�, we find that �rel

R =�rel
T =�rel, where

�rel =
eVdet

h
�T . �5h�

With some algebra, we obtain Ay�t�=Nye
uyta0 and By�t�

=Nye
vyta1, where

uR = R0eVdet ln�r0�/h ,

vR = R1eVdet ln�r1�/h ,

uT = T0eVdet ln�t0�/h ,

and

vT = T1eVdet ln�t1�/h .

Implications of these results �Eq. �5�� are summarized as
follows. First, the charge state evolves into �0���1�� with the
relaxation rate �rel �Eq. �5h�� under continuous projection of
detector electrons onto lead T�R�. The direction of the evo-
lution depends on which output lead is selected. It is impor-
tant to note that the conditional state remains as a pure state
as a result of measurement, in contrast to the case of dephas-
ing. We also point out that the conditional relaxation consid-
ered here is different from the stochastic evolution under
random selection of measurement outcome due to the parti-
tion noise of the QPC.21,22 In the stochastic evolution, the
evolution of the target state is affected both by the transmit-
ted and the reflected electrons. On the other hand, in the
conditional evolution described by �Eq. �5��, it does not mat-
ter that there are other electrons not monitored in the QPC.
In the measurement �Eq. �5��, we monitor only electrons of
lead y. In other words, the information obtained by the mea-
surement is selective. Under this measurement, the state of
charge evolves following Eq. �5c�, and this relaxation can be

observed in correlation experiment. In order to observe con-
ditional relaxation under monitoring only one particular out-
put lead, we need to correlate the state of the target system
with that of the detector output. �See below for observing
this correlation.� Second, �rel is much larger than
�T-dependence �dep. Because only one particular output is
continuously selected, the conditional relaxation is not re-
stricted by the shot noise of the QPC detector, unlike the
dephasing process. Finally, �rel depends only on �T, while
�dep depends both on �T and �. Dephasing is related to the
state information transferred to the detector and therefore to
the possibility of measurement. On the other hand, by select-
ing one particular lead in the detector, the phase part ��� of
the state information is erased. In fact, this behavior is
equivalent to the quantum erasure of the charge-state infor-
mation encoded in the relative scattering phase �.25

IV. TWO-PATH INTERFEROMETER COUPLED TO A
QUANTUM POINT CONTACT DETECTOR

Next, we propose a possible experiment to observe the
effect of the conditional relaxation. For a target system, we
consider an electronic two-path interferometer with a quan-
tum dot �QD� embedded in one of the two paths. The QD is
capacitively coupled to a QPC detector �see Fig. 2�. In fact,
the two-path interferometer can be regarded as a charge qubit
aside from the scattering at the QD. We simply discard the
reflection at the QD in our formulation. The two-path inter-
ferometer can be implemented by constructing a double-slit-
type Aharonov-Bohm interferometer.24 Alternatively, it can
be built up by two beam splitters �BS-� and BS-�� with
quantum Hall edge state. This is an electronic analog of the
Mach-Zehnder interferometer �MZI�.23 The electronic trans-
port in the interferometer is characterized by the scattering
matrix at BS-�, BS-� and QD,

Si = �ri ti�

ti ri�
� , �6�

where i=� ,� ,�. The reflection and the transmission prob-
abilities are written as Ri= �ri�2 and Ti= �ti�2, respectively.

Because of the dwell time in the QD �denoted as �−1�, the
dephasing effect due to coupling to the QPC detector appears

FIG. 2. �Color online� A schematic of a two-path interferometer
coupled to a quantum point-contact detector. Cross-correlation mea-
surement between an output lead from the interferometer �A or B�
and the other from the detector �T or R� reveals the nature of con-
ditional relaxation. �See text for a discussion.�
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in the probability �Px� to find an electron at lead x
�x=A ,B�,

Px = TrMZI�cx
†cx	�t = �−1�� , �7a�

where TrMZI�¯� sums over the MZI degree of freedom.
Equation �7a� implies that the electron is �on average� col-
lected at lead x after time t=1 /� upon injection. it gives

PA = R�R� + T�T�T� + 2VM cos�� + 
� , �7b�

PB = R�T� + T�R�T� − 2VM cos�� + 
� , �7c�

where �=arg�t�t�t�� /r�r��, M = �R�R�T�T�T��1/2, and 


=eVdet arg�
01� /h�. The visibility factor �V� depends on the
dephasing rate of Eq. �4� as

V = e−�dep/� � 1 − �dep/� , �7d�

in the limit of �dep /��1, which agrees with previous
results.5,12

The conditional probability �Px�y� to find an electron at
lead x �x=A ,B� conditioned on a particular detector output y
�y=T ,R� is obtained from the relation Px�y
= ���Mycx

†cxMy���. At time t=1 /�, it is given as

PA�y = Ny
2�R�R�e2 Re�uy�/� + T�T�T�e2 Re�vy�/�

+ 2MeRe�uy+vy�/� cos�� + �y/��� , �8a�

PB�y = Ny
2�R�T�e2 Re�uy�/� + T�R�T�e2 Re�vy�/�

− 2MeRe�uy+vy�/� cos�� + �y/��� , �8b�

where Ny = �e2 Re�uy�/�R�+e2 Re�vy�/�T��−1/2 �y=R ,T�. The am-
plitude of the interference term in Px�y is modulated by the
visibility factor Vy,

Vy = Ny
2eRe�uy+vy�/� � 1 � �1

2
− T���rel

�
, �8c�

where +�−� sign is for y=R�T�. In contrast to the case of
dephasing in single-particle transport, the visibility of the
conditional probability can be enhanced or reduced depend-
ing on the transmission probability T� of the BS-� in the
MZI and the choice of the output lead in the detector. When
T��1 /2 �T��1 /2�, the visibility is enhanced for y=R �y
=T� and reduced for y=T �y=R�. This behavior of the vis-
ibility can be understood by considering the direction of the
conditional relaxation in the Bloch sphere �Fig. 3�. The am-
plitude of the interference term is proportional to the radius
of the circle of its latitude. The amplitude is maximum at the
equator �T�=1 /2� which corresponds to the symmetric beam
splitting. Therefore, the interference signal is enhanced if the
conditional state evolves toward equator of the Bloch sphere
while it is reduced if the state evolves toward two poles. This
explains the visibility change of Eq. �8c� in the limit of weak
measurement.

In the following, we show that the cross-correlation mea-
surement of current at leads x �x=A ,B� and y �y=T ,R� is
directly related to the quantity Px�y in Eq. �8�. The bias volt-
age, V, applied to the MZI is assumed to be much smaller
than that of the detector: V�Vdet. The frequency-dependent
current cross correlation Sxy��� is defined by

2���� + ���Sxy���

= ��̄��Ix����Iy���� + �Iy�����Ix�����̄� , �9�

where ��̄� is the many-electron transport state of the com-
posite system. �Il is the current fluctuation defined by �Il
=Il− �Il� where Il is the output current operator at lead l.

In evaluating the expectation values in Eq. �9�, we need to

calculate quantities such as ��̄�cx
†�E�cx�E��cy

†���cy������̄�.
E ,E� and � ,�� are the energies of electrons injected from the
interferometer and the detector, respectively. These energies
are in the ranges 0�E, E��eV and 0��, ���eVdet. In or-
der to calculate such quantities, we made the following as-
sumptions: �i� all of the scattering matrices are independent
of the energies. This assumption is valid as long as the bias
voltages are not very large to alter the characteristics of the
QPCs. �ii� The density matrix of the whole system, 	̄

���̄���̄� can be written as a direct product,

	̄ � 	̄1 � 	̄2, �10�

where 	̄1 is the part of the density matrix that contains ener-
gies E ,E�, � ,��, while 	̄2 represents the remaining part. This
is a reasonable assumption because the different energy
states of electrons are unlikely to interfere with each other.
Using these assumptions, we obtain a simple relation of the
zero-frequency cross correlation,

Sxy�0� =
e3

��
V�Px�yPy − PxPy� , �11�

where PR=R�R0+T�R1 and PT=1− PR. Also, it is straight-
forward to find that the average current �Ix� at lead x satisfies
the Landauer formula: �Ix�= �e2 /2���PxV. �Similarly, �Iy�
= �e2 /2���PyVdet for the detector.� Therefore, analyzing the
cross correlation Sxy�0� as well as the dc currents reveals the
characteristic features of conditional relaxation and
dephasing.

V. CONCLUSION

In conclusion, we have found that a linearly superposed
charge state is conditionally relaxed under continuous mea-
surement by an attached QPC detector. The direction of the

FIG. 3. �Color online� Schematic for describing the conditional
relaxation �a� for �y�= �R� and �b� for �y�= �T�. The arrows indicate
the direction of the conditional evolution induced by the measure-
ment of Eq. �5�. For arrows toward equator �poles�, the visibility of
the conditional probability is enhanced �reduced� as a result of
measurement.
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relaxation depends on the choice of the detector output lead.
It takes place much faster than the current-sensitive part of
dephasing. We suggest that this feature can be revealed by
constructing an interferometer for the charge state and inves-
tigating the current-current correlation between the two sub-
systems.
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